rouq_mask#

beatmap.core.rouq_mask(intercept, iso_df, nm, slope, *args, enforce_y_intercept_positive=True, enforce_pressure_increasing=True, enforce_absorbed_amount=True, enforce_relative_pressure=True, enforce_enough_datapoints=True, min_num_points=5)#

Calls all check functions and combines their masks into one “rouqerol mask”.

Rather than pass individual parameters, this function can accept bet_results (where bet_results is a named tuple output by the bet function).

Parameters:
interceptndarray

2D array of intercept values, used in check1.

iso_dfDataFrame

Dataframe of isotherm data, used in check2.

nmndarray

2D array of amount in the monolayer values, used in check3 and check4.

slopendarray

2D array of slope values, used in check4

enforce_y_intercept_positivebool

If True, this check will be evaluated, otherwise skipped.

enforce_pressure_increasingbool

If True, this check will be evaluated, otherwise skipped.

enforce_absorbed_amount_validbool

If True, this check will be evaluated, otherwise skipped.

enforce_relative_pressure_validbool

If True, this check will be evaluated, otherwise skipped.

enforce_enough_datapointsbool

If True, this check will be evaluated, otherwise skipped.

min_num_pointsint

The minimum number of experimental data points for a relative pressure interval to be considered valid.

Returns:
rouq_masknamedtuple

Contains arrays for the result of each check and a masked array that is the result of all selected checks. Fields of the named tuple are:

  • rouq_mask.mask (MaskedArray) : object where invalid BET results are masked.

  • rouq_mask.check1 (ndarray) : array of 1s and 0s where 0 corresponds failing check1.

  • rouq_mask.check2 (ndarray) : array of 1s and 0s where 0 corresponds failing check2.

  • rouq_mask.check3 (ndarray) : array of 1s and 0s where 0 corresponds failing check3.

  • rouq_mask.check4 (ndarray) : array of 1s and 0s where 0 corresponds failing check4.

  • rouq_mask.check5 (ndarray) : array of 1s and 0s where 0 corresponds failing check5.